Panel Session:

Prioritizing OpenMP Features to Provide for
Performance, Portability and Productivity

Oscar Hernandez (ORNL)
Vivek Kale (BNL)

4 .;rm.%% U.S. DEPARTMENT OF Offlce Of |

@'g ENERGY Science

O" 1

V 4O
=g

National Nuclear Security Administration

EEEEEEEEEEEEEEEEEEEEEEEE

OpenMP Architecture Review Board

OpenVIP

The mission of the OpenMP ARB
(Architecture Review Board) is to
standardize directive-based multi-

- : S (E< grooxnnuen
Ianguage hlgh_level para”ellsm AMDa Argonne ¥=% Clrm @ natioNAL LaBoRATORY OMP
that is performant, productive and 0 TEES intel) B
portabl%. P Smesr lepcC FUJITSU ZEE: 44— (intel) Rl

_ ® .J\A#
Loz 2 ‘
k Lofames g% L O O, Cy icron @

..................
MARVELL®

NEC o @) redror TG
‘ 1 OF
Q' Csuse Tacc Wiy 2] SRR

T niversity of Manchester

-\
EXASCALE
[— ([)I—) COMPUTING
2 Exascale Computing Project \ PROJECT

How OpenMP evolves compared with HPC trends www.top500.0rg)

160

N
92

140 -

=

N

o
N
o

=
o
o

[
V)

Number of systems
(0]
@)

Weighted avg cores per socket

40 — — OpenMP 3.1 OpenMP 4.5 OpenMP 5.1 _
A EEm OpenMP 3.0 i OpenMP 4.0 OpenMP 5.0 B
O r T r+rrrTrTT T T T T T YT e r+r T 11 11+ 1111 —T171 0
CARARN AR ARV AN ZRV ARV ARV ARV ARN ARV ARV ARG SRV ARN ARV ARV ARV ARV ARV ¢
ST LTSI TP YYD
O QT O O O O O Q" Q" O Q Q" O

Total Num systems NVIDIA Mintel Other BEAMD «®= Average # of cores per socket

Parallel regions _ Device offloading / SIMD

-

——
-\
\ EXASCALE
) COMPUTING
3 Exascale Computing Project PROJECT
S

Credit: Jose Monsalve Diaz, at University of Delaware E \(

\\=

History of OpenMP: 1997 - 2020

In spring, 7
vendors and

the DOE agree
on the spelling
of parallel :
loops and form cOMPunity, the
the OpenMP group of
ARB. By OpenMP
October, users, is
version 1.0 of - formelj to
the OpenMP e enable
specification modifications re_sgar(?her
for Fortran is paﬂ|0|pat|9n.an
released. 1.1 d organize
workshops
1.0 2.0

cennnnninniiRNRRNNN

p Permanent ARB Auxiliary ARB

U.S. DEPARTMENT OF

/ENERGY

NYSE

National Nuclear Security Administration

—=
Office of — (— \ I_)

Science \\,_)

EXASCALE COMPUTING PROJECT

Relevance of OpenMP

OpenMP is about 50%, out
of all choices of X

@ OpenMP

@ CUDA
pThreads

@ Other

@ CUDA Fortran

@ OpenACC

@ OpenCL

@ Coarray Fortran

@® uPC

@ Intel TBB

@ Intel Cilk

@® Thrust

Update late 2016: 75% of codes
use OpenMP

* Programming Accelerators
Manage memory allocations (High Bandwidth, Low Latency, Accelerator)
. memories) with traits (pinned memory, etc)

« Data movement of complicated data structures (e.g., deep copy)
« Support for latest C++ and Fortran standads

. Interoperability with libraries

« Performance portable directives

« Task parallelism for asynchronous execution to orchestrate work between
CPUs and Accelerators

« SIMD directives (to support SIMD parallelism)
Focus on continuity of technology and early access to users

QMCPACK

CANDLE
v Q"" .S. DEPARTMENT OF Offi f | -.\ D |
NYSH NERGY |Soen N

National Nuclear Security Administration

EXASCALE COMPUTING PROJECT

Tests from miniQMC

OpenMP Offload in QMCPack

Compiler Clang AOMP XL Cray GCC GCC
9 0.7-4 16.1.1-3 9.0 9.2 10
device NV AMD NV NV NV AMD
math header conflict F P P P P
math linker error P P P F P
zzillare target static p p P -
static linking F P P P F
Async tasking F F P i F
multiple stream F P P F F
check_spo FR FW P P FL
check_spo_batched FR P P P FL
minigmc_sync_move FR P P P FL
Qe XL is the only survival
FL fail in linking Other compilers need further
FR fail in run .
B improvements

- not tested yet

Figure 7: Test results impacting performance in MiniQMC

Relative throughput

7.0

6.0 -

50

40 -

3.0 -

20 r

1.0

0.0

Performance with OpenMP Impls. -

XL 16.1.1-5 OpenMP target =
Clang 11 RC1 OpenMP target
Legacy CUDA GPU driver

Summit P9 + V100
NiO without J2, e-e Coulomb, NLPP
Only includes features optimized for
performance portabale QMCPACK
XL builds mix Clang object files
for best CPU performance
Clang wins XL with significant less overhead
OpenMP is behind legacy CUDA
due to the lack of asynchronicity

32 64 128
Number of atoms

256

512

Figure 8: Performance of QUICPack with IBM OpenMP

Other Implementations

Recent work (last few months)
with clang to improve it, e.g.,
on target region-to-stream
scheduling, support for
std::complex shows promise
for performance.

Still can’t show clang result
due to unique-to-Summit
CUDA driver problem soon to
be fixed, but clang OpenMP
estimated to have 0.75
performance of IBM XL.

Also have run with Cray clang
and AMD AOMP correctly.
These show promise though
don’t have all feature support
of clang.

Got code to work with oneAPI.

— |IBM OpenMP is shown reasonably performant though rapid development of LLVM OpenMP has shown

significant promise to allow for better performance over IBM offload.
— QMCPack will continue to track performance of latest OpenMP implementations available on ECP systems.

6 Exascale Computing Project

Courtesy Paul Kent (ORNL) and Ye Luo (ANL) from QMCPack team.

eXASsSCALE
) COMPUTING
FPROJECT

Functionality Status of Features in OpenMP
Implementations

MULTIPLE COMPILERS WILL SUPPORT A COMMON SET
Shows the OF OPENMP DIRECTIVES ON GPUS (NON-EXHAUSTIVE LIST)
AMD (mostly Intel (Approximately NVIDIA/PGI (Early 2021
featu res th at are A tracks LLVM) SEVEREEC LS) 2021 timeframe) for a production release)
2 (teams, parallel) 2 (¢

Levels of parallelism (11: 3 (teams, parallel, 2 (teams, parallel) e 2 (teams, parallel) 3 (teams, parallel, simd) 2 (teams, parallel)
Commonly simd)) pa(r:ﬁgsi)r simd)
supported across openw directive

target v v v v v v
OpenMP declare target v v v v v v

. map v v v v v v

Implementatlons target data v v v v v v

target enter/exit data Vv v N N v v

target update v v v v v v

teams v v v v v v

distribute v v v v v v

parallel v v Vv (may be inactive) v/ v v

for/do v v v v v v

reduction v v v v v v

. simdlen(1) V (accepted and .

Pl (11: honored with hint) ¥ (on host) v ignored) v v simdlen{1)

atomic v v v v v v

critical v v N4 N4 v X

sections v v v v v X

master v v v v v v

single v v v v v v

barrier v v v v v v

declare variant v v izt:%;::c;rai;anned X v v

—
Figure 1: Feature support of OpenMP directives in different OpenMP Implementations . ([\ I: Eé.’a%ﬁiﬁ;
7 Exascale Computing Project \ PROJECT

Thanks to Colleen Bertoni, JaeHyuck Kwack and organizers of Feb 2020 ECP AM OpenMP Vendor BoF

Cray compiler has highest performance in 6/7
C benchmarks (unofficial SPEC results)

, Cray-8.7.7
>03-postencili== [Clang-9.0.0-git LLVM/Clang is 39x
504.polbm{=r [GCC-8.1.1-git slower than Cray
. |
5]_4,pomr|q,.\..\..\..\..\..\..\.'{]] on 570-pbt-
552.peppT OpenMP loop
554.pcg? construct
lacement hurts
557.pcsp b7 ' P
PESP . LLVM/Clang
570.pbtp performance

Higher is better 0 10 20 30 40 50 60 70 From Christopher

D Speedup Daley
NERSC

How is this being addressed?

e LLVM implementations

e OpenMP performance benchmarks

"ﬁ‘\

) eXASsSCALE
F [COMPUTING 9
\ FPROJECT

9 Exascale Computing Project

OpenMP Version 5.0

 OpenMP 5.0 introduced powerful features to improve programmability

Task Vermor Detachable
Reductions ty Tasks
Initial Ct1 1, C++11, C++14 and CAIPRAIOTS 0 ence Tools
suppor -
C(F))r%plete Fortran 2003 Support, Initial Fortran %gcts Unified Sﬁ\aPrlesd
Support Improved Affinity Memory
loop " Collapse Non-Rectangular
Construct Tas%ﬂ%gga a l.oops
Multi-Level Affinity Data Serialization for Offload (Deep
Para IIIDGalll rsarlrl]el Meta- Functsy) Reverse
Soan Directives VariantsI T OEIoad
Interoperability and Usability I;nprovg as ==
.. Ephancements ependences= (V= B

What are the important features are important to
applications?

 Loop construct
« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

S N
\ EXASCALE

—) COMPUTING

e \ PROJECT

11 Exascale Computing Project

loop Construct

« Existing loop constructs are tightly bound to execution model:

#pragma omp for #pragma omp simd #pragma omp taskloop
for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..} for (i=0; i<N;++i) {..}

)

generate tasks

distribute work

barrier
Y A AN

join

taskwait

 The loop construct is meant to let the OpenMP implementation pick choose
the right parallelization scheme.

"Q‘\

) eXAsSsCALE
H [COMPUTING
\ PROJECT

S=n

12 Exascale Computing Project

12

How to use OpenMP on Accelerators

= The target construct offloads the

#pragma omp target teams enclosed code to the accelerator
#pragma omp distribute s [he teams construct creates a league
for (i=0; i<N; ++1i) { of teams
#pragma omp parallel for = he distribute construct distributes the
for (j=0; J<N; ++3) { outer loop iterations between the league
X[J+N*1] *= 2.0; of teams
} a The parallel for combined construct
} creates a thread team for each team
and distributes the inner loop iterations
to threads

working now
/-:\

) eXAsSsCALE
F [COMPUTING
\ PROJECT

13 Exascale Computing Project

How to use modern OpenMP — Execution Example

= The target construct offloads the
enclosed code to the accelerator

= [he loop construct allows concurrent

collapse(2) execution of the associated loops
for (i=0; i<N; ++i) {

for (j=0; Jj<N; ++3j) {
X[J+N*i] *= 2.0;
}

#pragma omp target
#pragma omp loop bind(thread) \

working soon

"Q‘\

EXASCALE
14 Exascale Computing Project \

PROJECT

S=n

How to use modern OpenMP — Execution Example

= The target construct offloads the

#pragma omp target teams enclosed code to the accelerator

#pragma omp loop bind(teams) = [he teams construct creates a league

for (i=0; i<N; ++i) { of teams

#pragma omp loop bind(thread) = [he loop construct allows concurrent
for (j=0; J<N; ++3) { execution of the associated loops,

X[F+N*1] *= 2.0; iterations are "logically” spread across

} the OpenMP threads in the binding

} thread set

working very soon

-~ —
\\) EXASCALE
t l) COMPUTING
\ PROJECT
K

15 Exascale Computing Project

Continuum of Control

#pragma omp for \

#pragma omp task #pragma omp for schedule(static,5)

#pragma omp loop

| |
—

Prescriptive
s Express “how”
Ignore implementation s Focus on implementation

Rely on quality of implementation [| EXpOSQ Contr0| over
execution

Descriptive

¢ Express “what”

s OpenMP strives to
= Support a useful subset of this spectrum
= Provide a structured path from descriptive to prescriptive where needed

PROJECT

16 Exascale Computing Project

S

What are the important features are important to
applications?

 Loop construct
* Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

S N
\ EXASCALE

—) COMPUTING

e \ PROJECT

17 Exascale Computing Project

Unified Virtual Memory Support

= Single address space over CPU and GPU memories
= Data migrated between CPU and GPU memories transparently to the
application - no need to explicitly copy data

#pragma omp requires unified shared memory
for (k=0; k < NTIMES; k++)

{
// No data directive needed for pointers a, b, cC
#pragma omp target teams distribute parallel for
for (j=0; j<ARRAY SIZE; j++) {
a[j] = b[J] + scalar * c[]];
}
}

"ﬁ‘\

) eXASsSCALE
H [COMPUTING
\ FPROJECT

18 Exascale Computing Project

What are the important features are important to
applications?

Loop construct
Unified shared memory support

Accelerator data management
— Non-contiguous data mappings

Memory allocators
Metadirective and variants

Tasks
— Detach
— Reductions

Deep copy

C++ virtual methods

19 Exascale Computing Project

eXASsSCALE
COMPUTING
FPROJECT

Non-contiguous data updates and mappings

allocate(a(nx, ny))
ISOMP TARGET DATA MAP(to: a(1:nx/2, 1:ny))

ISOMP TARGET TEAMS DISTRIBUTE
I a(1:nx/2, 1:ny) = a(1:nx/2, 1:ny)/nx

ISOMP END TARGET TEAMS DISTRIBUTE

ISOMP END TARGET DATA

~—
\\ EXASCALE
P—— () P COMPUTING
20 Exascale Computing Project A— \ PROJECT

What are the important features are important to
applications?

 Loop construct
« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

« Memory allocators
« Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

S N
\ EXASCALE

—) COMPUTING

e \ PROJECT

21 Exascale Computing Project

How to use modern OpenMP — Data Placement

#oragma omp target teams dist... O The_ aIIoc_ate _directive allows to place
{ double Scratchpad[PartitionSize]; variables in different memory regions,
' e.g.,omp_pteam_mem_alloc will put

pragma omp allocate(Scratchpad) \ variables into "shared GPU memory"

allocator(omp pteam mem alloc) _
= The omp_alloc runtime call allocates

i/ OR memory dynamically using a specified
double Scratchpad[PartitionSize]; allocator, e.g., omp_pteam_mem_alloc
#pragma omp target teams dist... \

private(Scratchpad)\
allocator(omp pteam mem alloc)
{ // Do stuff

}

"Q‘\

) eXAsSsCALE
H [COMPUTING
\ PROJECT

S=n

22 Exascale Computing Project

Example: Using Memory Allocators

void allocator_example(omp_allocator_t *my_allocator) {
int a[M], b[N], c;
#pragma omp allocate(a) allocator(omp_high bw _mem alloc)

#pragma omp allocate(b) // controlled by OMP ALLOCATOR and/or omp_ set default allocator
double *p = (double *) omp_alloc(N*M*sizeof(*p), my_allocator);

#pragma omp parallel private(a) allocate(my_allocator:a)

omp_free(p);

{
some_parallel code();

}
#pragma omp target firstprivate(c) allocate(omp_const_mem_alloc:c) // on target; must be compile-time expr
{

#pragma omp parallel private(a) allocate(omp _high bw _mem_alloc:a)

{

some_other_parallel code();
}

}

23 Exascale Computing Project \(\

\\|_)

eXAsSsCALE
COMPUTING
PROJECT

23

What are the important features are important to
applications?

 Loop construct
« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
« Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

S N
\ EXASCALE

—) COMPUTING

e \ PROJECT

24 Exascale Computing Project

Metadirective

#pragma omp target teams

{

#pragma omp metadirective \
when(device={kind(nohost)}: distribute parallel for) \
default (parallel for)

for(int i=0; i<N; i++)

Cli] = Ali]+BI[iJ;

\ eXASsSCALE
[COMPUTING
\ FPROJECT

25 Exascale Computing Project

Begin declare variant

// Nvidia

#pragma omp begin declare variant match(device={arch(nvptx)}, \
implementation={score(1l):vendor(llvm,ibm)})

float fast sqrt(float _ x) { return _ nv_sqrt(_x); }

#pragma omp end declare variant

// Intel

#pragma omp begin declare variant match(device={arch(haswell)}, \
implementation={score(1l):vendor(intel)})

float fast sqgrt(float _ x) { return intel asm sgrt(__x); }

#pragma omp end declare variant

// Default

float fast sqrt(float _ x) { return slow sqrt(_x); } =

=E(CP s

S

26 Exascale Computing Project

What are the important features are important to
applications?

 Loop construct
« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

—
\ EXASCALE
[r—— [) COMPUTING
v FPROJECT
Zl

27 Exascale Computing Project

What are the important features are important to
applications?

 Loop construct
« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

 Deep copy

C++ virtual methods

S N
\ EXASCALE

—) COMPUTING

e \ PROJECT

28 Exascale Computing Project

Task Reductions

« Task reductions extend traditional
reductions to arbitrary task graphs

« Extend the existing task and
taskgroup constructs

« Also work with the taskloop
construct

29 Exascale Computing Project

int res = 0;
node_t* node = NULL;
#pragma omp parallel
{
#pragma omp single
{
#pragma omp taskgroup task reduction(+: res)
{
while (node) {
#pragma omp task in_reduction(+: res) \
firstprivate(node)
{
res += node->value;
}
node = node->next;
}
}
}
}

eXAsSsCALE
PROJECT

=P

COMPUTING

29

What are the important features are important to
applications?
* Loop construct

« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

Deep copy

C++ virtual methods

FPROJECT

® th I ’:\ eEeEXASCALE
Interoperability with GPU streams ':\([30—\) e

30 Exascale Computing Project

Not all devices support shared
memory so requiring it makes a
program less portable

Painstaking care was required to map
complex data before 5.0

OpenMP 5.0 adds deep copy support
so that programmer can ensure that
compiler correctly maps complex
(pointer-based) data

31 Exascale Computing Project

OpenMP 5.0 Improves Using Devices:
Deep Copy Support

typedef struct mypoints {

int len;

double *needed data;

double useless data[500000];
} mypoints t;

// no declare target needed
int do something with p(mypoints t *p);

#pragma omp declare mapper (mypoints t v)\
map (v.len, v.needed data, \
v.needed data[0O:v.len])

mypoints t * p = create array of mypoints t(N);
#fpragma omp target map(p[:N])

{
do something with p(p):;

—

ey
-\
eXASsSCALE
r—— [) COMPUTING
\ FPROJECT

31

What are the important features are important to
applications?
* Loop construct

« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

Deep copy

C++ virtual methods

eXASsSCALE

 Interoperability with GPU streams — ([’ \) Sale e
\ dz PROJECT

32 Exascale Computing Project

Classes with virtual methods

void foo() {
class Base {

Derived d;
virtual void something() = 0;

d.mapSelf();
virtual void mapSelf() = 0;

bar(&d);

¥

class Derived : public Base {

¥

void bar(Base *b) {
void something() override { /* do logic */ }

void mapSelf() override {
b->something();

—
7 —

\ EXASCALE
—— ([) I: COMPUTING
33 Exascale Computing Project \ PROJECT

OpenMP 5.0 will support other C++ accelerator frameworks

Number of related technologies: Kokkos, RAJA, OpenACC, CUDA/HIP, SYCL

Goal is to deliver enhanced OpenMP to address increasing heterogeneity and

complexity of systems (e.g. accelerator offloading, tasks)

CUDA/ Kokkos OpenACC OpenMP 5.0 | RAJA SYCL
HIP
Languages C/C++ C/C++ C/C++/ C/C++/ C/C++ C/C++
Fortran Fortran Kokkos RAJA
Prog. Style Template Directive- Directive- C++11 Template
Meta- based based lambdas Meta-
programming, programmi
C++11 lambdas ng, C++11
Igambdas OpenMP OpenACC
Parallelism SIMT OpenMP, SIMD, SPMD, OpenMP, OpenCL
Pthreads, Fork-Join, SIMD, CUDA,
CUDA, CUDA, Tasks, HIP,
HIP HIP Fork-Join,
CUDA, CUDA(ptx)/HIP(gcn)/SYCL/OpenCL
HIP
Licensing/ Proprietary [Open-sourced Few Open- Open- Royalty-)
Accessibility compilers sourced sourced Free Service Layers
Not on all
arch.
Abstraction Low Medium High High Medium Medium
Level
Ty \
N VS(..?""A IR U.S- DEPARTMENT OF Office of . (\ I_)
. ‘ -) A4 b : HIP targets are work-in-progress activities)
National Nuclear Security Administration 4 S cience —

EXASCALE COMPUTING PROJECT

What are the important features are important to
applications?
* Loop construct

« Unified shared memory support

« Accelerator data management
— Non-contiguous data mappings

 Memory allocators
 Metadirective and variants

e Tasks
— Detach
— Reductions

Deep copy

C++ virtual methods

eXASsSCALE

* Interoperability with GPU streams — ([’ \) ST
\ i PROJECT

35 Exascale Computing Project

Interop: get stream/queue/etc.

omp_interop_t o= OMP_INTEROP_NONE; intptr_t type;
#pragma omp interop tasksync init obj(o) depend(inout: a)
omp_get _interop_property(o, OMP_INTEROP_TYPE, &type);
if (type == OMP_INTERFACE_CUDA) {
cudaStream t s;
omp_get _interop_property(o, OMP_INTEROP_TASKSYNC, &s);
cublasSetStream(s);
call_cublas_async_stuff();
} else {
// handle other cases

}

#pragma omp interop tasksync destroy obj(o) depend(inout: a)

’g‘\

) eXAsSsCALE
F [COMPUTING
\ PROJECT

S

36 Exascale Computing Project

Tuning OpenMP target : Thread Blocking Effects

#pragma omp target Code from GridMini in
#pragma omp teams distribute num teams(nblocks) thread limit(nthreads) + ECP's Lattice QCD

for(int ss=0; ss<nblocks; ss++) {
#pragma omp parallel for
for(int tt=0; tt<nthreads; tt++) {
auto tmp = eval(ss*nthreads+tt,expr);
vstream(me[ss*nthreads+tt],tmp);

}
}
nblocks nthreads GB/s
Default Default 240
65536 8 162
32768 32 252
640 128 289
4096 256 306

"Q‘\

) eXASsSCALE
F [COMPUTING
\ PROJECT

37 Exascale Computing Project

Functionality of OpenMP C Implementations Based on SOLLVE’s
V&V

SUMMIT OBVIAN*
xlc (16.01.0001.0006) clang version 9.0.0 CORAL clang AOMP 0.7-6
ReSU ItS for C Compiler result Runtime result Compiler result Runtime result Compiler result Runtime result
tests . linkedlist PASS PASS PASS PASS PASS PASS
based on % & mmm target PASS PASS PASS PASS PASS PASS
QMCPack % 5 mmm target parallel. fo.r simd PASS PASS PASS PASS PASS PASS
=7 gmcpack target static lib PASS PASS PASS FAIL PASS PASS
reduction separated directives PASS PASS PASS PASS PASS PASS
nested target simd PASS PASS PASS PASS PASS PASS
target data PASS PASS PASS PASS PASS PASS
— Feature target enter data PASS PASS PASS PASS PASS PASS
sSu pport in target enter exit data PASS PASS PASS PASS PASS PASS
Op enMP o target parallel PASS PASS PASS FAIL PASS FAIL
. 5 target private PASS PASS PASS PASS PASS FAIL
runtimes ® targetsimd PASS PASS PASS PASS PASS PASS
needs to - target teams distribute PASS PASS PASS PASS PASS PASS
be target teams distribute parallel for PASS PASS PASS PASS PASS PASS
improved. target teams distribute parallel for devices PASS PASS PASS PASS PASS FAIL
target update PASS PASS PASS PASS PASS PASS
task target PASS PASS PASS PASS PASS PASS

" Obivan is a HPC cluster @ UDel Figure 1: Table of test results for OpenMP. [emantati]
i \ VEFOOp
&“&i) I5 %m%vid

SForrftier ihTdfination, e.g., understanding of failures, visit: https:/crpl.cis.udel.edu/ompv results/ Bemholdt

https://crpl.cis.udel.edu/ompvvsollve/results/

Functionality of OpenMP C++ Implementations

Tests based on GEMV from QMCPack.

SUMMIT
xlc++ (16.01.0001.0006) g++9.1.0
C++ Compiler result Runtime result Compiler result Runtime result
S ., Alpaka - complex template PASS PASS PASS PASS
= GEMV - target PASS PASS PASS PASS
L £ GEMV - target many matrices PASS PASS PASS PASS
2 & GEMV - target reduction PASS PASS PASS PASS
< GEMV - target teams dist par for PASS PASS PASS PASS
reduction separated directives PASS PASS PASS PASS
& target map classes default PASS PASS PASS PASS
3 target data map classes PASS PASS PASS PASS
S target enter data classes inheritance PASS PASS PASS PASS
L target enter data classes simple PASS PASS PASS PASS
target enter exit data classes PASS FAIL FAIL

Figure 3: Table of test results for OpenMP C++ Implementations.

clang++ version 9.0.0 CORAL

Compiler result Runtime result

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
FAIL

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS

OBVIAN*
clang++ AOMP 0.7-6

Compiler result Runtime result

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS

— Most OpenMP offload features in all OpenMP implementations work.

— target enter exit data isn’t supported properly across any OpenMP

Implementations.

For further information, e.g., understanding of failures, visit: https:/crpl.cis.udel.edu/ompvvsollve/results/

39 Exascale Computing Project

PASS
PASS
PASS
PASS
PASS
PASS
PASS
PASS
FAIL

PASS
FAIL

Courtesy Swaroop Pophale (ORNL) and David Bernholdt (ORNL)

—\

[—\(f [

eXASsSCALE
COMPUTING
PROJECT

https://crpl.cis.udel.edu/ompvvsollve/results/

OpenMP Offload in HPGMG

MPI CPU-only (best)}

CUDA (NVCC 10.1.243)}

OpenACC (PGI 20.1)}

OpenMP (XL 16.1.1-5)}

OpenMP (Clang 11.0.0-git)}

00 05 10 15 2.0 25 3.0 35 4.0 45
DOF/s le8

»
»

Higher is better

Figure 5: Performance of HPGMG with different Implementations.

40 Exascale Computing Project

HPGMG is a DOE benchmark which may
be included in the SPEC HPC 2020
benchmark suite

The plot compares CUDA, OpenACC, and
OpenMP performance on 1 socket of the
Summit supercomputer using 3 MPI ranks
and 3 GPUs for the Unified Memory
version of HPGMG run on Summit.
Results for the explicit data management
version of HPGMG will be shown at a later
date when the IBM compiler fixes a
reported bug and the CCE compiler
supports OpenMP pointer attachment

— |BM xI's OpenMP offload performance shown with HPGMG is enc{gu-;a%@g \)P COMEUTING

Performance of SU3 LQCD Benchmark with OpenMP Libraries

e Developed benchmark code representative of applications in ECP Application Project LQCD. The code is at
https://bitbucket.org/dwdoerf/su3 bench.

e Ran with three different OpenMP libraries, with CUDA and with PGI’s OpenACC.

e Note that the peak GF/s in plots refers to the theoretical floating point performance based on the Arithmetic Intensity of the offloaded
kernel. A Volta GPU has a peak GF/s of 7800 GF/s for kernels which are not bound by memory bandwidth.

S Analytical roofline on
#pragma omp target teams distribute

for(int i=0; i<1048576; ++i) { Use teams parallelism for the ~1 NVIDIAV1QO GPUs
million sites :
#pragma omp parallel for collapse(3) CUDA} : : e '
for(int j=0; j<4; ++3j) { . ‘
for(int k=0; k<3; k++) { Use :thread par_a”ellsm_ for the PGI-19.9 (OpenACC)} | N — :
for(int 1=0; 1<3; 1++) { matrices associated with the 4 :
Complx cc; “links” per site Cray-9.0.0| , : : '
for(int m=0; m<3; m++) { OpenMP: :
cc += d_a[i].link[j].e[k][m] * d b[j].e[m][1]; XL-16.1.1-3| = Up to 60%:;
}]
. . . of CUDA
} d c[i].link[]].e[k][1l] = cc; Clang-10.0.0-git perf.
} . ‘ ; ‘ , I
} o 0 200 400 600 800 1000 1200 1400
} Higher is bel‘ter{> GFLOP/s
Listing 1: GPU Computation region of SU3 benchmark Figure 7: Performance of SU3 with different Implementations

— Results for SU3 benchmark run on NVIDIA Tesla V100 with different OpenMP libraries (left plot) shows how clang provides best performance of 640 GFLOP/s
— The performance of clang OpenMP is 3% of peak and is very low compared to other Compilers. However, manual SPMDization of code can reduce implicit memory
flushes and increases performance to 401 GFLOP/s.

\
eXAsSsCALE
\ IJ COMPUTING

— Ongoing changes in clang OpenMP can provide better performance over the other OpenMP vendor libraries.
PROJECT

41 Exascale Computing Project \(\

Thanks to Chris Daley and Doug Doerfler at NERSC.

https://bitbucket.org/dwdoerf/su3_bench

Conclusions

s On ECP Systems (particularly Summit) compilers are ready for device offload.
Fundamental features are available. Still, tests could be improved to handle real-world
data structures with pointers.

s Applications can move towards OpenMP offload using clang/LLVM OpenMP as it has
support for many new OpenMP 5.0 offload features.

IBM’s support for OpenMP offload for C 1s mature. Could be improved for Fortran.
Performance of IBM OpenMP offload 1s 70% of CUDA performance in HPGMG.
While QMCPack currently relies on IBM x1 OpenMP for offload, 1t’s recently (a) shown
to potentially have good performance from using LLVM clang OpenMP offload support

and (b) works with other vendor compilers
s The SPEC HPC 2020 benchmark suite 1s under active development. The benchmarks will

be pruned over the next few months based on benchmark readiness and formally meeting
benchmark suite requirements (no new benchmarks will be considered at this stage).

—
- —

eXASsSCALE
[——) COMPUTING
\ FPROJECT

42 Exascale Computing Project

